If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+15k=-5
We move all terms to the left:
k^2+15k-(-5)=0
We add all the numbers together, and all the variables
k^2+15k+5=0
a = 1; b = 15; c = +5;
Δ = b2-4ac
Δ = 152-4·1·5
Δ = 205
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{205}}{2*1}=\frac{-15-\sqrt{205}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{205}}{2*1}=\frac{-15+\sqrt{205}}{2} $
| -8(5a-5)+a=118 | | 5+10m=4+1m | | x/8=x/9−3 | | X+8=-(3x-4) | | -7-2k+3k=1 | | 8x^2+6x−9=0 | | -5-6x=-89 | | 4.83-x=16.05 | | 5(1+2m)=1/2(8+2m) | | 7y-4y=3y-14 | | x+2/2+x+2/7=4 | | 5(3a-5)+6(1+a)=-19 | | 4.83+4.4x-x=11.65 | | X^+4+2x+2=30 | | 4x-(8x+7)=2x-31 | | 7(3r-1)-(r+5)=52 | | -4n+17-9n+9=n-65 | | 3(2x+1)-2=10 | | 8p-3=-29 | | 4/17x+39/2=-17/4x-100/3 | | -3x-18=-72 | | -7=-3c-2 | | 7n+5=-26 | | 71x-16-3x=11+68x-27 | | -3=5k-7 | | -6x-2=28 | | 2x+3=-3x+15 | | 2(32+-2y)+4y=64 | | 2(32+-2y)+4y=40 | | -42=3(8x+4)-5(1-5x) | | 4t+3=0 | | 5y+1=8y+12 |